Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565995

RESUMO

Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.


Assuntos
Eleutherococcus , Saponinas , Metilação de DNA , Eleutherococcus/genética , Eleutherococcus/metabolismo , Metabolismo Secundário , Secas
2.
3 Biotech ; 13(7): 259, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37405267

RESUMO

In this study, through analysis of the genome of Eleutherococcus senticosus (ES). 228 AP2/ERF genes were identified and classified into 5 groups AP2 (47 genes), ERF (108 genes), RAV (6 genes), DREB (64 genes), and soloist (3 genes). According to the AP2/ERF classification of Arabidopsis thaliana, the ES AP2/ERF proteins were subdivided into 15 groups. The gene structure and motifs of each group of AP2/ERF in ES were highly similar, which confirmed the conservation of AP2/ERF genes. The ES AP2/ERF genes were unevenly distributed on chromosomes, and a total of four pairs of tandem repeats, and 84 co-linear gene pairs were found, so the AP2/ERF genes expanded in a fragment replication manner, and dominated by pure selection during evolution. By analyzing the transcriptome data of ES under different drought stress conditions, 87 AP2/ERF genes with differential expression were obtained, of which 10 genes with highly significant differences were further analyzed and screened for qRT-PCR validation. To the best of our knowledge, this is the first report on the AP2/ERF gene of Eleutherococcus senticosus, and the bioinformatics analysis and experimental validation provided valuable information about them, which is of great significance for further research on the molecular mechanisms of ES in response to drought stress.

3.
BMC Genomics ; 24(1): 84, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814191

RESUMO

BACKGROUND: Methyl-binding domain (MBD) is a class of methyl-CpG-binding domain proteins that affects the regulation of gene expression through epigenetic modifications. MBD genes are not only inseparable from DNA methylation but have also been identified and validated in various plants. Although MBD is involved in a group of physiological processes and stress regulation in these plants, MBD genes in Eleutherococcus senticosus remain largely unknown. RESULTS: Twenty EsMBD genes were identified in E. senticosus. Among the 24 chromosomes of E. senticosus, EsMBD genes were unevenly distributed on 12 chromosomes, and only one tandem repeat gene existed. Collinearity analysis showed that the fragment duplication was the main motif for EsMBD gene expansion. As the species of Araliaceae evolved, MBD genes also evolved and gradually exhibited different functional differentiation. Furthermore, cis-acting element analysis showed that there were numerous cis-acting elements in the EsMBD promoter region, among which light response elements and anaerobic induction elements were dominant. The expression motif analysis revealed that 60% of the EsMBDs were up-regulated in the 30% water content group. CONCLUSIONS: By comparing the transcriptome data of different saponin contents of E. senticosus and integrating them with the outcomes of molecular docking analysis, we hypothesized that EsMBD2 and EsMBD5 jointly affect the secondary metabolic processes of E. senticosus saponins by binding to methylated CpG under conditions of drought stress. The results of this study laid the foundation for subsequent research on the E. senticosus and MBD genes.


Assuntos
Eleutherococcus , Saponinas , Eleutherococcus/química , Eleutherococcus/genética , Eleutherococcus/metabolismo , Simulação de Acoplamento Molecular , Desmetilação do DNA , Secas , Metilação de DNA
4.
Synth Syst Biotechnol ; 7(3): 928-940, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35664927

RESUMO

Metabolite biosynthesis is regulated by gene expression, which is altered by DNA methylation in the promoter region. Chalcone isomerase (CHI) gene encodes a key enzyme in the Lithocarpus polystachyus Rehd flavonoid pathway, and the expression of L. polystachyus CHI (LpCHI) is closely related to the synthesis of flavonoid metabolites. In this study, we analyzed the DNA methylation site of the LpCHI promoter and its effect on gene expression and metabolite accumulation. The proportions of three types of LpCHI promoter DNA methylation are 7.5%, 68.75%, 18.75%, determined by bisulfite sequencing. Transcriptome sequencing shows that LpCHI is strongly up-regulated in LpCHI promoter methylation Type A but down-regulated in LpCHI promoter methylation Type B and Type C. The expression of LpCHI shows no significant difference between Type B and Type C. Moreover, nine kinds of differentially expressed transcription factors (DETFs) bind to seven CpG-sites of the LpCHI promoter region to regulate LpCHI expression. The results of metabolomics show that differentially accumulated flavonoids are higher in LpCHI promoter methylation Type A than in LpCHI promoter methylation Type B and Type C. Additionally, a positive correlation was found between the LpCHI expression and flavonoids accumulation. These results show that the effect of CpG site-specificity on gene transcription is great than that of overall promoter DNA methylation on gene transcription. The mechanisms of flavonoid genes regulating metabolite accumulation are further revealed.

5.
ACS Omega ; 7(23): 19437-19453, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722012

RESUMO

Lithocarpus polystachyus Rehd has received great attention because of its pharmacological activities, such as inhibiting oxidation and lowering blood glucose and blood pressure, and flavonoids are one of its main pharmacodynamic components. It is important to understand the mechanisms of the flavonoid biosynthetic pathway of L. polystachyus, but the regulation of flavonoid biosynthesis is still unclear. In this study, differentially expressed genes and differentially accumulated metabolites in L. polystachyus were studied by integrating transcriptomics and metabolomics technologies. We confirmed the key genes involved in the flavonoid biosynthesis of L. polystachyus, including LpPAL3, LpCHS1, LpCHS2, LpCHI2, and LpF3H, which had consistent expression patterns with their upstream and downstream metabolites, and there is a significantly positive correlation between them. Compared to mature leaves, stems and young leaves are higher in the expression levels of key structural genes. We deduced that the MYB and bHLH transcription factors regulated the biosynthesis of different flavonoid metabolites and their regulatory patterns. Among them, LpMYB2, LpMYB20, LpMYB54, LpMYB12, and LpWD40-113 positively regulated the biosynthesis of flavones and flavanones. This discovery preliminarily revealed the pathways and key genes of flavonoid biosynthesis in L. polystachyus, which provided a reference for further study on flavonoid biosynthesis.

6.
Heliyon ; 8(6): e09665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706960

RESUMO

Eleutheroside B (syringin) is a medicinal active ingredient extracted from Eleutherococcus senticosus (Ruper. et Maxim.) Maxim with high clinical application value. However, its synthesis pathway remains unknown. Here, we analyzed the eleutheroside B biosynthesis pathway in E. senticosus. Consequently, metabolomic and transcriptomic analyses identified 461 differentially expressed genes (DEGs) and 425 metabolites. Further, we identified 7 DEGs and 67 metabolites involved in the eleutheroside B biosynthetic pathway in the eleutheroside B high and low plants. The correlation between the gene and metabolites was explored using the pearson correlation coefficient (PCC) analysis. Caffeoyl-CoA O-methyltransferase, caffeic acid-O-methyltransferase, ß-amyrin synthase (ß-AS) genes, NAC5, and HB5 transcription factors were identified as candidate genes and transcription factors related to the eleutheroside B synthesis. Eleutheroside B content was the highest at the young stage of the leaves both in the high and low eleutheroside B plants. Quantitative real-time polymerase chain reaction revealed that phenylalanine ammonia-lyase1, cinnamate 4-hydroxylase, ß-AS, and leucoanthocyanidin reductase gene had higher expression levels at the young stage of the leaves in the low eleutheroside B plants but lower expression levels in the high eleutheroside B plants. In the present study, we complemented the eleutheroside B biosynthetic pathway by analyzing the expression levels of relevant genes and metabolite accumulation patterns.

7.
Open Life Sci ; 16(1): 1022-1036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616915

RESUMO

Mevalonate pyrophosphate decarboxylase (MPD) is a key enzyme in terpenoid biosynthesis. MPD plays an important role in the upstream regulation of secondary plant metabolism. However, studies on the MPD gene are relatively very few despite its importance in plant metabolism. Currently, no systematic analysis has been conducted on the MPD gene in plants under the order Apiales, which comprises important medicinal plants such as Panax ginseng and Panax notoginseng. This study sought to explore the structural characteristics of the MPD gene and the effect of adaptive evolution on the gene by comparing and analyzing MPD gene sequences of different campanulids species. For that, phylogenetic and adaptive evolution analyses were carried out using sequences for 11 Campanulids species. MPD sequence characteristics of each species were then analyzed, and the collinearity analysis of the genes was performed. As a result, a total of 21 MPD proteins were identified in 11 Campanulids species through BLAST analysis. Phylogenetic analysis, physical and chemical properties prediction, gene family analysis, and gene structure prediction showed that the MPD gene has undergone purifying selection and exhibited highly conserved structure. Analysis of physicochemical properties further showed that the MPD protein was a hydrophilic protein without a transmembrane region. Moreover, collinearity analysis in Apiales showed that MPD gene on chromosome 2 of D. carota and chromosome 1 of C. sativum were collinear. The findings showed that MPD gene is highly conserved. This may be a common characteristic of all essential enzymes in the biosynthesis pathways of medicinal plants. Notably, MPD gene is significantly affected by environmental factors which subsequently modulate its expression. The current study's findings provide a basis for follow-up studies on MPD gene and key enzymes in other medicinal plants.

8.
J Appl Genet ; 62(4): 559-570, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34241817

RESUMO

Glycosyltransferase gene family 1, also known as uridine diphosphate glycosyltransferase (UGT), is the largest glycosyltransferase family in plants, playing a vital role in their growth and development. In this study, 244 UGT genes with conserved PSPG motifs were identified in the genome of Quercus robur L. The collinearity analysis results showed that tandem repeat was the main way of UGT genes expansion in Q. robur, with 21 groups of 55 tandem repeat genes. UGT genes were divided into 15 subgroups A-P; group K was lost, and the gene structure and conserved domain of the same subgroup were basically the same. Cis-element analysis showed that upstream 2,000 bp promoter sequence of UGT genes contained light response elements, plant hormone response elements, and stress-related cis-elements, which indicated that UGT genes of Q. robur might be regulated by various metabolic pathways. In particular, some UGTs in group L of Q. robur contained a conserved promoter structure. The expression pattern analysis results demonstrated that UGT genes of groups B, D, E, and I were differentially expressed under Tortrix viridana L. stress. The expression of UGTs in group E decreased under stress, the expression of group L increased, and that of genes in groups D and B were different. The functions of UGT genes in E and L groups are relatively conservative, and their functions may also conserve among species. The study results have a particular reference value for further research on the function of Q. robur UGT genes.


Assuntos
Glicosiltransferases , Quercus , Genoma , Glicosiltransferases/genética , Filogenia , Quercus/genética
9.
Biochem Genet ; 59(2): 491-505, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33135088

RESUMO

Chalcone Isomerase (CHI) catalyzes the biosynthesis of flavonoids and secondary metabolism in plants. Currently, there is no systematic analysis of CHIs gene family in Fagaceae which is available. In this study, twenty-two CHI proteins were identified in five species of the Fagaceae family. The CHI superfamily in Fagaceae can be classified into three subfamilies and five groups using phylogenetic analysis, analysis of physicochemical properties, and structural prediction. Results indicated that serine (Ser) and isoleucine (Ile) residues determine the substrate preferred by active Type I Fagaceae CHI, and the chalcone isomerase-like (CHIL) of Fagaceae had active site residues. Adaptive analysis of CHIs showed that CHIs are subject to selection pressure. The active CHI gene of Fagaceae was located in the cytoplasm, and it had the typical gene structure of CHI and contains four exons. All the twenty-two identified CHIs had the conserved domain motif 3, and the different groups had their own structural characteristics. In the process of fatty acid binding protein (FAP) evolution to CHIL and CHI, the physical and chemical properties of proteins also had significant differences in addition to changes in protein functions.


Assuntos
Fagaceae/genética , Liases Intramoleculares/genética , Filogenia , Proteínas de Plantas/genética , Fagaceae/enzimologia
10.
Oncogene ; 39(27): 5056-5067, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32518374

RESUMO

Williams syndrome transcription factor (WSTF) is a transcription factor and tyrosine kinase. WSTF overexpression promotes migration and proliferation of various cancers, and Ser158 (WSTFS158) phosphorylation plays an important role in this process. However, the role of the other posttranslational modifications of WSTF is unknown. Here, we report that lysine (K) 426 on WSTF is acetylated by MOF and deacetylated by SIRT1. Mechanistically, male-specific lethal (MSL) 1v1 interaction with WSTF facilitates its interaction with MOF for WSTF acetylation, which in turn promotes WSTFS158 phosphorylation. The kinase and transcriptional regulatory activity of WSTF were enhanced by acetylation. WSTFK426ac levels positively and significantly correlated with tumor size, histological grade, and age. Moreover, we demonstrated that acetylated WSTF promotes cancer cell proliferation, migration, invasion, and tumor formation. In conclusion, we identified the enzymes regulating WSTF K426 acetylation, and demonstrated an acetylation-dependent mechanism that modulates the activities of WSTF and contributes to tumorigenesis. Our findings provide new clues to study WSTF-mediated normal development and disease.


Assuntos
Carcinogênese/patologia , Histona Acetiltransferases/metabolismo , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Transplante de Neoplasias , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transplante Heterólogo
11.
Plants (Basel) ; 8(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581604

RESUMO

The WRKY transcription factors family, which participates in many physiological processes in plants, constitutes one of the largest transcription factor families. The Asterales and the Apiales are two orders of flowering plants in the superorder Asteranae. Among the members of the Asterales, globe artichoke (Cynara cardunculus var. scolymus L.), sunflower (Helianthus annuus L.), and lettuce (Lactuca sativa L.) are important economic crops worldwide. Within the Apiales, ginseng (Panax ginseng C. A. Meyer) and Panax notoginseng (Burk.) F.H. Chen are important medicinal plants, while carrot (Daucus carota subsp. carota L.) has significant economic value. Research involving genome-wide identification of WRKY transcription factors in the Asterales and the Apiales has been limited. In this study, 490 WRKY genes, 244 from three species of the Apiales and 246 from three species of the Asterales, were identified and categorized into three groups. Within each group, WRKY motif characteristics and gene structures were similar. WRKY gene promoter sequences contained light responsive elements, core regulatory elements, and 12 abiotic stress cis-acting elements. WRKY genes were evenly distributed on each chromosome. Evidence of segmental and tandem duplication events was found in all six species in the Asterales and the Apiales, with segmental duplication inferred to play a major role in WRKY gene evolution. Among the six species, we uncovered 54 syntenic gene pairs between globe artichoke and lettuce. The six species are thus relatively closely related, consistent with their traditional taxonomic placement in the Asterales. This study, based on traditional species classifications, was the first to identify WRKY transcription factors in six species from the Asteranae. Our results lay a foundation for further understanding of the role of WRKY transcription factors in species evolution and functional differentiation.

12.
Oncogene ; 38(7): 980-997, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30185813

RESUMO

Overexpression of Jumonji domain-containing 6 (JMJD6) has been reported to be associated with more aggressive breast cancer characteristics. However, the precise role of JMJD6 in breast cancer development remains unclear. Here, we demonstrate that JMJD6 has intrinsic tyrosine kinase activity and can utilize ATP and GTP as phosphate donors to phosphorylate Y39 of histone H2A.X (H2A.XY39ph). High JMJD6 levels promoted autophagy in triple negative breast cancer (TNBC) cells by regulating the expression of autophagy-related genes. The JMJD6-H2A.XY39ph axis promoted TNBC cell growth via the autophagy pathway. We show that combined inhibition of JMJD6 kinase activity and autophagy efficiently decreases TNBC growth. Together, these findings suggest an effective strategy for TNBC treatment.


Assuntos
Autofagia , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Feminino , Histonas/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Fosforilação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Zhongguo Zhong Yao Za Zhi ; 42(4): 675-679, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-28959836

RESUMO

The sweet taste and health effect of Lithocarpus polystachyus are mainly related flavonoid. To obtain Lithocarpus transcriptome database and flavonoid biosynthesis-related genes, the RNA-Seq techology (Illumina HiSeq 4000) was used to sequence its transcriptome. Six Gb database was assembled after assembly steps, and 41 043 of L. polystachyus unigenes were obtained. With blasting them with 7 data banks, all unigenes were involved in 51 GO-terms and 237 metabolic pathways. And furthermore 28 genes of the flavonoid biosynthesis-related were found. After using the MicroSatallite, 18 161 SSR were obtained, the single-nucleotide-repeated was the richest at 7 346. These data represent abundant messages about transcripts and provide valuable genome data sources in molecular biology of L. polystachyus.


Assuntos
Fagaceae/metabolismo , Flavonoides/biossíntese , Genes de Plantas , Transcriptoma , Vias Biossintéticas , Fagaceae/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
14.
FEBS J ; 283(24): 4462-4473, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27813335

RESUMO

Double-stranded DNA breaks induce serine phosphorylation of histone H2A.X, producing γ-H2A.X foci that are then recognized by DNA damage response pathway proteins. Formation of γ-H2A.X is therefore critical for the repair of DNA double-stranded breaks and maintenance of genomic stability, and defects in the recognition or repair of double-stranded breaks can result in tumorigenesis. However, key details regarding the formation of γ-H2A.X and its possible role in tumorigenesis remain elusive. Here, we report a previously unknown phosphorylation site on H2A.X, Tyr39. Phosphorylation at this site is induced by ionizing radiation and is a prerequisite for γ-H2A.X formation. Increased phosphorylation of H2A.X at Tyr39 was observed in multiple cancer cell lines, and we found that H2AX Tyr39 phosphorylation positively correlated with histological grade, tumor size and tumor node metastasis stage, and negatively correlated with survival. We also identified a potential role for eyes absent 2 (EYA2) in regulating H2A.X Tyr39 phosphorylation. Our study supports an important role for H2AX Tyr39 phosphorylation in γ-H2A.X formation and cancer progression.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Neoplasias/genética , Tirosina/metabolismo , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/genética , Ensaio Cometa , Progressão da Doença , Células Hep G2 , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Tirosina/genética
15.
Oncotarget ; 7(33): 53153-53164, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27449290

RESUMO

It remains unclear how the signals of mutant KRASG12 in the transformed cells spread to the surrounding non-mutated cells and changes the microenvironment to promote tumor formation. We identified that Williams-Beuren syndrome transcription factor (WSTF), a non-secretory protein, was released in complex with secretory protein-neuregulin-3 (NRG3). The KRASG12 mutant activates the transcription of NRG3. The WSTF/NRG3 in extracellular space could activate oncogenic pathways in normal colon cells carrying wild type KRAS and endow them with the ability to express NRG3 and release WSTF/NRG3. Extracellular WSTF/NRG3 promotes the formation of colon tumors. Blockade of extracellular WSTF could restore cetuximab sensitivity of colon cancer cells with mutant KRAS. The appearance of WSTF/NRG3 in serum and urine correlates with a colon tumor carrying a KRASG12 mutant. In summary, our demonstration provides a new pathway to our understanding of the biological development of complex diseases.


Assuntos
Mutação de Sentido Incorreto , Neurregulinas/genética , Comunicação Parácrina/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Células A549 , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cetuximab/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Epiteliais/metabolismo , Feminino , Glicina/genética , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Neurregulinas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
16.
Zhongguo Zhong Yao Za Zhi ; 40(1): 59-62, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-25993788

RESUMO

In order to find the characteristics of two members of gene family of squaleneexpoxidase (SE) , a quantitative real time PCR method was developed to analyze the expression of Eleutherococcus senticosus SE1 and SE2 gene from different growth periods and in different organs. The result indicated that all the expression of SE2 more than SE1 in the whole growth period and organs of E. senticosus. And in the whole growth period, expression of SE1 showed a low-high-low characteristic. Both expression of SE2 and growth period showed the same trend. The lowest content of the expression was in the roots. SE1 expression have been improved more than SE2 when treated with MeJA. The expression of E. senticosus SE1 and saponins content had significantly positive correlation (P < 0.05) and the correlation coefficients was 0. 858, while the correlation was not significant for SE2. That indicated that SE1 played a key enzyme gene in the biosynthesis of triterpenoidsaponins


Assuntos
Eleutherococcus/enzimologia , Peroxidase/genética , Proteínas de Plantas/genética , Saponinas/metabolismo , Eleutherococcus/química , Eleutherococcus/genética , Eleutherococcus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Saponinas/análise , Transcriptoma
17.
Oncotarget ; 6(16): 14497-506, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25971333

RESUMO

The proto-oncogene c-Jun plays essential roles in various cellular processes, including cell proliferation, cell differentiation, and cellular apoptosis. Enormous efforts have been made to understand the mechanisms regulating c-Jun activation. The males absent on the first (MOF)-containing non-specific lethal (NSL) complex has been shown to positively regulate gene expression. However, the biological function of the NSL complex is largely unknown. Here we present evidence showing that c-Jun recruits the NSL complex to c-Jun target genes upon activation. The NSL complex catalyzes H4K16 acetylation at c-Jun target genes, thereby promoting c-Jun target gene transcription. More interestingly, we also found that the NSL complex promotes the release of the repressive NuRD complex from c-Jun target genes, thus activating c-Jun. Our findings not only reveal a new mechanism regulating c-Jun activation, but also identify the NSL complex as a c-Jun co-activator in c-Jun-regulated gene expression, expanding our knowledge of the function of the NSL complex in gene expression regulation.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Nucleares/genética , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-jun/genética , Transfecção
19.
Zhongguo Zhong Yao Za Zhi ; 37(15): 2267-71, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23189731

RESUMO

OBJECTIVE: To clone calmodulin (CaM) gene in Eleutherococcus senticosus, and study the effect of endophytic fungi on expression amount of CaM gene. METHOD: The CaM full length cDNA sequence was cloned by rapid amplification of cDNA ends (RACE). The gene was analyzed and corresponding structure and functions were predicted by the bioinformatics methods. The expression amount of CaM gene affected of endophytic fungus P116-1a, P116-1b, P1094 and P312-1 was detected by RT-PCR. RESULT: The full length of CaM cDNA was 856 bp containing an ORF of 450 bp that encoded a protein of 149 amino acids. The homologous of predicted protein was almost 100% with plants like Panax ginseng and Daucus carota. RT-PCR results showed that endophytic fungus improved CaM expression amount significantly (P<0.05). The highest expression amount of CaM occurred 90 d after reinoculated with endophytic fungi P1094, up to 2.96 times of the control. CONCLUSION: The CaM gene of E. senticosus was successfully cloned for the first time. The results demonstrated that endophytic fungus of E. senticosus improved CaM expression amount significantly.


Assuntos
Calmodulina/genética , Clonagem Molecular , Eleutherococcus/genética , Eleutherococcus/microbiologia , Endófitos/fisiologia , Fungos/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Calmodulina/química , Calmodulina/metabolismo , Eleutherococcus/classificação , Eleutherococcus/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 37(14): 2041-5, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23126180

RESUMO

OBJECTIVE: To analyze the effect of endophytic fungi on expression amount of key enzyme genes SS (squalene synthase gene), SE (squalene epoxidase gene) and bAS (beta-amyrin synthase gene) in saponin biosynthesis and saponins content in Eleutherococcus senticosus. METHOD: Wound method was used for back meeting the endophytic fungi to E. senticosus. With GAPDH as internal control gene, the expression of key enzyme genes was detected by real time PCR method. E. senticosus saponins content was measured by spectrophotometry method. RESULT: When wound method back meeting P116-1a and P116-1b after 30 d, the expression content of SS improved significantly (P < 0.05), however the back meeting of P109-4 and P312-1 didnt change the expression of SS. After that SS expression showed reduction-equality-reduction varying trend. Thirty days after back meeting P312-1, the expression content of SE improved significantly (P < 0.05). Ninty days after back meeting P116-1b and P312-1, the expression content of SE improved significantly to 130%,161%, respectively (P < 0.05). After 120 d, back meeting four endophytic fungi, the expression of SE were significantly higher than the control (P < 0.05). Back meeting four endophytic fungi form 60 d to 120 d, the expression of bAS was significantly higher than the control (P < 0.05). The back meeting four endophytic fungi improved E. senticosus saponins content significantly (P < 0.05). CONCLUSION: Endophytic fungi P116-1a, P116-1b, P1094 and P312-1 significantly effected the expression of key enzyme genes SS, SE and bAS and then affected E. senticosus saponins content. Among the genes, bAS was key target gene.


Assuntos
Eleutherococcus/microbiologia , Endófitos/fisiologia , Fungos/fisiologia , Regulação Enzimológica da Expressão Gênica , Saponinas/análise , Eleutherococcus/química , Eleutherococcus/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Saponinas/biossíntese , Esqualeno Mono-Oxigenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA